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Abstract
The heat capacities of ferrofluids are investigated using a thermodynamic perturbation theory
approach and the NV T and N pT Monte Carlo simulation methods. The systems studied are
considered as one-, three-, and five-component dipolar mixtures modeled by the Stockmayer
interaction potential. The isochoric and isobaric heat capacities are calculated and compared
with the data determined for a monodisperse equivalent of the system.

1. Introduction

Magnetic fluids are stable colloidal dispersions of magnetic
particles coated with ionic groups or polymer surfactants in
liquid carriers. An inherent feature of real ferrocolloids is
that the nanoparticles differ in size and magnetic moment.
This polydispersity affects the equation of state of the
system and may have important consequences for the phase
behavior, in particular for the fluid–fluid coexistence [1, 2].
This property also affects the equilibrium magnetization for
dense as well as for dilute liquids. Recently, the influence
of realistic polydispersity on the equilibrium magnetization
properties of model and real ferrofluids was investigated by
means of simulation and theory, and it was found that the
magnetization is generally higher in the polydisperse system
than in the monodisperse equivalent [3, 4]. The influence of
polydispersity on the heat capacity along the phase separation
curves was also studied in [5]. This work showed that
the isochoric heat capacity was rather insensitive to the
composition variations along the phase equilibrium curves.

In this work, our main goal is to study the influence
of polydispersity on the bulk phase isochoric and isobaric
heat capacities of magnetic fluids. The role of heat
capacities is essential in both applications and theoretical
thermodynamics [6, 7]. On the one hand, they can be
measured by calorimetric methods. On the other hand, certain
thermodynamic functions can be calculated from them. It
could be important to know these physical properties of
ferrocolloids for the calculation of the heating effects of
biocompatible ferrofluids in altering magnetic fields [8]. In
this paper, the heat capacities of polydisperse ferrofluids are
approximated by the corresponding properties of one-, three-,

and five-component dipolar mixtures. The interaction potential
between two dipolar particles is modeled by the Stockmayer
(STM) potential, which is the sum of the Lennard-Jones (LJ)
and the dipole–dipole interactions. Both Monte Carlo (MC)
simulations and perturbation theoretical (PT) calculations are
used to compare the monodisperse heat capacities with the
polydisperse ones.

2. Basic potential model

We consider a c-component mixture of spherical particles
of diameter σi carrying a magnetic dipole moment mi .
The isotropic part of the interparticle pair potential between
particles of components i and j is modeled by the LJ potential

wLJ
i j (r12) = 4ε

[(
σi j

r12

)12

−
(

σi j

r12

)6
]

, (1)

where ε is the energy parameter and σi j = (σi + σ j )/2. In
addition, the magnetic dipolar interaction is described via point
dipoles embedded at the centers of the spheres

wdd
i j (r12, ω1, ω2)

= −mi m j

r 3
12

[
3(m̂1 · r12)(m̂2 · r12)

r 2
12

− (m̂1 · m̂2)

]
, (2)

where r12 = r1 − r2 is the interparticle separation vector, from
the center of particle 1 to that of particle 2. Particle 1 (2) of
type i ( j ) is located at r1 (r2) and carries a dipole moment of
strength mi (m j ) with an orientation given by the unit vector
m̂1 (m̂2) or by the space angle ω1 (ω2). Thus the STM pair
potential is given by

wSTM
i j (r12, ω1, ω2) = wLJ

i j (r12) + wdd
i j (r12, ω1, ω2). (3)
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3. Perturbation theory

The thermodynamic PT of dipolar fluids is based on the
Gubbins–Pople–Stell [9] division of the interparticle potential
into a reference and a perturbation part. The reference potential
is obtained as an unweighted average over the orientations of
dipoles 1 and 2:

wref
i j (r12) = 〈wSTM

i j (r12, ω1, ω2)〉ω1,ω2 = wLJ
i j (r12), (4)

while the perturbation part is the dipole–dipole interaction
potential. According to this division the perturbation expansion
of the free energy of the STM fluid about a LJ reference system
is given as

Fc = Fc
LJ + F1 + F2 + F3 + · · · , (5)

where Fc
LJ is the configurational free energy of the reference

system, F1 is the first-order perturbation term, and so on. The
free energy of the LJ reference fluid is calculated from an
equation of state proposed by Johnson et al [10]. F1 vanishes
because the angular integral in this term is zero. The second-
order term can be expressed as

F2 = −2π

3
Nβρ

c∑
i=1

c∑
j=1

xi x j m
2
i m2

j

I dd
i j (β, ρ, xi , x j )

σ 3
i j

, (6)

where ρ = N/V is the particle number density, β = 1/(kBT )

is the inverse temperature, and xi = Ni /N is the number
fraction of component i . The third-order PT term is

F3 = 1

54
Nβ2ρ2

×
c∑

i=1

c∑
j=1

c∑
k=1

xi x j xkm2
i m2

j m
2
k

K ddd
i jk (β, ρ, xi , x j , xk)

σi jσ jkσik
. (7)

In these equations I dd
i j and K ddd

i jk are integrals over the
two- and three-particle correlation functions (gLJ

i j (r12) and
gLJ

i jk(r12, r23, r13)) for the reference fluid. These integrals have
only been calculated for one-component fluids, using MC and
molecular dynamics results for the LJ reference system. The
resulting values have been fitted to simple functions of reduced
temperature and density and can be found in [11]. To improve
the convergence in equation (5) for the dipolar terms the Padé
approximant is used:

Fc = FLJ
c + F2

1 − F3/F2
. (8)

The integrals I dd
i j and K ddd

i jk cannot be calculated for a
many-component mixture since the numerical data for the
corresponding correlation functions are missing. However,
these integrals are related to the corresponding one-component
fluid integrals by the van der Waals one-fluid theory. In our
case it means that the following approximations are used:

I dd
i j (β, ρ, xi , x j) = I dd(β, ρσ 3

x ), (9)

and
K ddd

i jk (β, ρ, xi , x j , xk) = K ddd(β, ρσ 3
x ). (10)

The integrals I ddd and K ddd are one-component fluid
integrals [11] calculated at the reduced density ρσ 3

x , using the
average diameter

σ 3
x =

c∑
i=1

c∑
j=1

xi x jσ
3
i j . (11)

Note that there are other ways to approximate these mixture
integrals, for example using the so called conformal solution
expansion [12], which cancel the coupling in equations (6)
and (7) and therefore the application is easier.

4. Heat capacities

The configurational isochoric heat capacity is defined as

Cc
V = CV − C id

V =
(

∂U c

∂T

)
V

= −T

(
∂2 Fc

∂T 2

)
V

, (12)

where CV is the total isochoric heat capacity, C id
V is the ideal

gas isochoric heat capacity, and U c is the configurational
internal energy. The corresponding equations for the isobaric
heat capacity are

Cc
p = Cp − C id

p + NkB = Cp − C id
V

=
(

∂ H c

∂T

)
p

= −T

(
∂2Gc

∂T 2

)
p

, (13)

where C id
p is the ideal gas isobaric heat capacity, H c is the

configurational enthalpy, and Gc is the configurational free
enthalpy of the system. Here, the configurational isochoric
heat capacity is calculated from equation (12), while for the
calculation of Cc

p the following thermodynamic relation is
applied:

Cc
p = Cc

V − T

(
∂p

∂T

)2

v

(
∂p

∂V

)−1

T

, (14)

where p is the pressure of the system calculated from the free
energy. The derivatives of thermodynamic functions can be
calculated from fluctuation formulas in various ensembles. For
example, in the NV T ensemble the isochoric heat capacity can
be obtained as

Cv = 1

NkBT 2

(〈U 2〉N V T − 〈U〉2
N V T

)
. (15)

The isobaric heat capacity corresponds to a fluctuation formula
in the N pT ensemble:

Cp = 1

NkBT 2

(〈H 2〉N pT − 〈H 〉2
N pT

)
. (16)

5. Computational details

To introduce realistic polydispersity into our calculations
we started from the experimental magnetization curves of
ferrofluids [4]. The particle polydispersity is described by the
gamma distribution

p(ξ) = ξα exp(−ξ)

�(α + 1)
, (17)
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Figure 1. Temperature dependence of isochoric heat capacities of
monodisperse and polydisperse magnetic fluids at the reduced
density ρ∗ = 0.4. The symbols represent the NV T ensemble
MC simulation data while the lines represent the PT results.

where ξ = σ/σ0 is the relative diameter of particles, α is
the parameter of the distribution, and � denotes the gamma
function. Assuming spherical particles, the magnetic moment
of a particle mi depends linearly on the bulk magnetization of
the ferromagnetic component Mb:

mi = Mb
π

6
σ 3

i . (18)

To model polydispersity of the magnetic interactions we
assumed that this relation is valid for each individual particle
of the ferrofluid, i.e., mi ∝ σ 3

i . In this work the heat
capacities of polydisperse ferrofluids are approximated by the
corresponding properties of one-, three-, and five-component
dipolar mixtures. The discretization of the distribution function
is performed in such a way that the relative deviation in 〈σ 〉
is less than 1.2%. The results for the dipolar (magnetic)
fluids are presented in reduced units: T ∗ = kBT/ε is the
reduced temperature, ρ∗ = ρ〈σ 3〉 is the reduced density
with 〈σ 3〉 = ∑

i xiσ
3
i , m∗ = m/

√
ε〈σ 3〉 is the reduced

dipole moment, p∗ = p〈σ 3〉/ε is the reduced pressure,
c∗

V = Cc
V /NkB is the reduced configurational isochoric heat

capacity, and c∗
p = Cc

p/NkB is the reduced configurational
isobaric heat capacity. In our calculations the one-component
(monodisperse) fluid is characterized by uniform σ and m
with the additional specification that m∗ = 1. This value
was assigned to the mean dipole moment of the polydisperse
system (〈m∗〉 = ∑

i xi m∗
i = 1) for the sake of comparison.

All NV T and N pT MC simulations were performed with
either 343 or 512 particles. Boltzmann sampling and minimum
image boundary conditions with half-cell cut-off and long-
range corrections (LRCs) were used in both ensembles. For
the dispersion part of the potential, the usual LJ-tail LRC was
used, while for the dipole–dipole interaction a reaction field
LRC with the conducting boundary condition was used. In the
case of NV T simulations the number of cycles was between
1×105 and 2×105, while in the case of N pT simulations it was
between 4 ×105 and 5 ×105 depending on the state point. The
NV T starting configuration was a hcp lattice; the equilibration

Figure 2. Temperature dependence of the isochoric heat capacities of
monodisperse and polydisperse magnetic fluids at the reduced
density ρ∗ = 0.8. The symbols represent the NV T ensemble
MC simulation data while the lines represent the PT results.

period was 2×104−4×104 cycles. The N pT runs were started
from the equilibrated NV T configurations. The statistical
errors were calculated on the basis of the standard deviations
of 10 subaverages.

6. Results and discussion

Preliminary phase equilibrium computations have been
performed to establish state points for the heat capacity
calculations that are outside the two-phase regions. (For
one-component systems see [13] and [14].) At constant
volume, we have chosen the reduced densities ρ∗ = 0.4 and
0.8 that correspond to dilute and dense liquid phase points,
respectively, in the temperature range studied. At constant
pressure, two supercritical pressure values have been chosen
(p∗ = 0.5 and 1). Calculations using the conformal solution
theory [12] to rescale the mixture integrals into one-component
ones showed that in the case of lower temperatures the PT
overestimates the simulation data by 50–70% for both three-
and five-component mixtures. Obviously, cross correlations
important at low temperatures are neglected in this approach;
therefore, we did not pursue this route. In this work, the
mixture integrals were scaled by the van der Waals one-
fluid theory given by equations (9) and (10). Figure 1
shows the isochoric heat capacities for ρ∗ = 0.4 as a
function of the temperature. For both the monodisperse and
polydisperse magnetic fluids c∗

V decreases with increasing
temperature. Both methods show that the polydispersity causes
only a small increase in c∗

V . This increase is larger at lower
temperatures where correlations between species of different
size and the dipole have a more significant effect, while at
higher temperatures these correlations are reduced by thermal
motion. The agreement between MC and PT is also better at
high temperatures.

At the higher density ρ∗ = 0.8, a considerable decrease
in the heat capacity appears as polydispersity is turned on
(figure 2). Interestingly, using a five-component mixture does
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Figure 3. Temperature dependence of isobaric heat capacities of
monodisperse and polydisperse magnetic fluids at the reduced
pressure p∗ = 0.5. The symbols represent the N pT ensemble
MC simulation data while the lines represent the PT results.

not change the results significantly compared to the three-
component case as shown by both simulation and theory. The
agreement between MC and PT is better than in the previous
case. This is not surprising because at higher densities the
fluid structure is not so strongly perturbed by the addition of
dipolar forces; the dominant effect is given by the short-range
forces [9]. The effect of polydispersity is not so sensitive to the
temperature as in the case of the dilute system: the shift appears
at high temperatures too. The temperature dependences of the
isobaric heat capacities are displayed in figures 3 and 4 for a
lower (p∗ = 0.5) and a higher (p∗ = 1) pressure, respectively.
The polydispersity causes some increase in the isobaric heat
capacity. As in the case of c∗

V at high density (figure 2), the
results for c = 3 and 5 are very close to each other. Also,
in accordance with the results for c∗

V , the increase in the heat
capacity is smaller at high temperatures when the system is
more diluted. The lower pressure in figure 3 corresponds to
lower densities in the range of ρ∗ = 0.16–0.66 as opposed to
the density range ρ∗ = 0.30–0.74 in the case of figure 4.

The pronounced maxima at the reduced temperature T ∗ �
1.75 are a fingerprint of a liquid–vapor-like phase transition,
which takes place at lower pressures. For the critical pressure,
the c∗

p versus T ∗ curves diverge at the critical temperature.
Increasing the pressure, this divergence becomes a maximum
as was shown for the LJ fluid before [6]. At higher pressures,
the maximum is less pronounced as shown by figure 4. The
agreement between the simulation data and the theoretical
calculations is quantitatively good. Note that we have
performed MC simulations for seven-component mixtures as
well, but within the uncertainty of the simulation data we have
not found any difference between the heat capacity data for the
five- and seven-component mixtures. This means that a five-
component mixture approximation is enough for calculating
the heat capacities of polydisperse magnetic fluids assuming
that the fluid does not have an extreme polydispersity. The
theoretical calculations also confirm this conclusion.

From a theoretical point of view it is possible to work
with continuous polydispersities as well. In that case,

Figure 4. Temperature dependence of isobaric heat capacities of
monodisperse and polydisperse magnetic fluids at the reduced
pressure p∗ = 1. The symbols represent the N pT ensemble
MC simulation data while the lines represent the PT results.

the summations in equations (6), (7) and (11) have to be
substituted with integrations, while the number concentrations
have to be substituted with the probability density function
of equation (17). However, the corresponding integrals can
be calculated only numerically. Work in this direction is in
progress [15].

7. Summary

The isochoric and isobaric heat capacities of monodisperse and
polydisperse ferrofluids have been calculated at different
densities and pressures using NV T and N pT MC simulation
methods. It has been found that at high densities
the isochoric heat capacity decreases with increasing
polydispersity, while the isobaric heat capacity increases with
increasing polydispersity. A PT method has been proposed
for calculating the heat capacities of monodisperse and
polydisperse ferrofluids. Reasonable quantitative agreement
has been found between the theoretical and simulation results.
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